vectara_agentic package
Submodules
vectara_agentic.agent module
This module contains the Agent class for handling different types of agents and their interactions.
- class vectara_agentic.agent.Agent(tools: list[FunctionTool], topic: str = 'general', custom_instructions: str = '', verbose: bool = True, update_func: Callable[[AgentStatusType, str], None] | None = None, agent_progress_callback: Callable[[AgentStatusType, str], None] | None = None, agent_config: AgentConfig | None = None)[source]
Bases:
object
Agent class for handling different types of agents and their interactions.
- chat(prompt: str) str [source]
Interact with the agent using a chat prompt.
- Parameters:
prompt (str) – The chat prompt.
- Returns:
The response from the agent.
- Return type:
str
- classmethod from_corpus(tool_name: str, data_description: str, assistant_specialty: str, vectara_customer_id: str = '', vectara_corpus_id: str = '', vectara_api_key: str = '', agent_progress_callback: Callable[[AgentStatusType, str], None] | None = None, verbose: bool = False, vectara_filter_fields: list[dict] = [], vectara_lambda_val: float = 0.005, vectara_reranker: str = 'mmr', vectara_rerank_k: int = 50, vectara_n_sentences_before: int = 2, vectara_n_sentences_after: int = 2, vectara_summary_num_results: int = 10, vectara_summarizer: str = 'vectara-summary-ext-24-05-sml') Agent [source]
Create an agent from a single Vectara corpus
- Parameters:
tool_name (str) – The name of Vectara tool used by the agent
vectara_customer_id (str) – The Vectara customer ID.
vectara_corpus_id (str) – The Vectara corpus ID (or comma separated list of IDs).
vectara_api_key (str) – The Vectara API key.
agent_progress_callback (Callable) – A callback function the code calls on any agent updates.
data_description (str) – The description of the data.
assistant_specialty (str) – The specialty of the assistant.
verbose (bool, optional) – Whether to print verbose output.
vectara_filter_fields (List[dict], optional) – The filterable attributes (each dict maps field name to Tuple[type, description]).
vectara_lambda_val (float, optional) – The lambda value for Vectara hybrid search.
vectara_reranker (str, optional) – The Vectara reranker name (default “mmr”)
vectara_rerank_k (int, optional) – The number of results to use with reranking.
vectara_n_sentences_before (int, optional) – The number of sentences before the matching text
vectara_n_sentences_after (int, optional) – The number of sentences after the matching text.
vectara_summary_num_results (int, optional) – The number of results to use in summarization.
vectara_summarizer (str, optional) – The Vectara summarizer name.
- Returns:
An instance of the Agent class.
- Return type:
- classmethod from_dict(data: Dict[str, Any]) Agent [source]
Create an Agent instance from a dictionary.
- classmethod from_tools(tools: ~typing.List[~llama_index.core.tools.function_tool.FunctionTool], topic: str = 'general', custom_instructions: str = '', verbose: bool = True, update_func: ~typing.Callable[[~vectara_agentic.types.AgentStatusType, str], None] | None = None, agent_progress_callback: ~typing.Callable[[~vectara_agentic.types.AgentStatusType, str], None] | None = None, agent_config: ~vectara_agentic.agent_config.AgentConfig = AgentConfig(agent_type=<AgentType.OPENAI: 'OPENAI'>, main_llm_provider=<ModelProvider.OPENAI: 'OPENAI'>, main_llm_model_name='', tool_llm_provider=<ModelProvider.OPENAI: 'OPENAI'>, tool_llm_model_name='', observer=<ObserverType.NO_OBSERVER: 'NO_OBSERVER'>, endpoint_api_key='dev-api-key')) Agent [source]
Create an agent from tools, agent type, and language model.
- Parameters:
tools (list[FunctionTool]) – A list of tools to be used by the agent.
topic (str, optional) – The topic for the agent. Defaults to ‘general’.
custom_instructions (str, optional) – custom instructions for the agent. Defaults to ‘’.
verbose (bool, optional) – Whether the agent should print its steps. Defaults to True.
agent_progress_callback (Callable) – A callback function the code calls on any agent updates. update_func (Callable): old name for agent_progress_callback. Will be deprecated in future.
agent_config (AgentConfig, optional) – The configuration of the agent.
- Returns:
An instance of the Agent class.
- Return type:
vectara_agentic.tools module
This module contains the ToolsFactory class for creating agent tools.
- class vectara_agentic.tools.ToolsFactory[source]
Bases:
object
A factory class for creating agent tools.
- create_tool(function: Callable, tool_type: ToolType = ToolType.QUERY) VectaraTool [source]
Create a tool from a function.
- Parameters:
function (Callable) – a function to convert into a tool.
tool_type (ToolType) – the type of tool.
- Returns:
A VectaraTool object.
- Return type:
- database_tools(tool_name_prefix: str = '', content_description: str | None = None, sql_database: SQLDatabase | None = None, scheme: str | None = None, host: str = 'localhost', port: str = '5432', user: str = 'postgres', password: str = 'Password', dbname: str = 'postgres', max_rows: int = 500) List[VectaraTool] [source]
Returns a list of database tools.
- Parameters:
tool_name_prefix (str, optional) – The prefix to add to the tool names. Defaults to “”.
content_description (str, optional) – The content description for the database. Defaults to None.
sql_database (SQLDatabase, optional) – The SQLDatabase object. Defaults to None.
scheme (str, optional) – The database scheme. Defaults to None.
host (str, optional) – The database host. Defaults to “localhost”.
port (str, optional) – The database port. Defaults to “5432”.
user (str, optional) – The database user. Defaults to “postgres”.
password (str, optional) – The database password. Defaults to “Password”.
dbname (str, optional) – The database name. Defaults to “postgres”. You must specify either the sql_database object or the scheme, host, port, user, password, and dbname.
max_rows (int, optional) – if specified, instructs the load_data tool to never return more than max_rows rows. Defaults to 500.
- Returns:
A list of VectaraTool objects.
- Return type:
List[VectaraTool]
- get_llama_index_tools(tool_package_name: str, tool_spec_name: str, tool_name_prefix: str = '', **kwargs: dict) List[VectaraTool] [source]
Get a tool from the llama_index hub.
- Parameters:
tool_package_name (str) – The name of the tool package.
tool_spec_name (str) – The name of the tool spec.
tool_name_prefix (str, optional) – The prefix to add to the tool names (added to every tool in the spec).
kwargs (dict) – The keyword arguments to pass to the tool constructor (see Hub for tool specific details).
- Returns:
A list of VectaraTool objects.
- Return type:
List[VectaraTool]
- class vectara_agentic.tools.VectaraTool(tool_type: ToolType, metadata: ToolMetadata, fn: Callable[[...], Any] | None = None, async_fn: Callable[[...], Awaitable[Any]] | None = None)[source]
Bases:
FunctionTool
A subclass of FunctionTool adding the tool_type attribute.
- classmethod from_defaults(fn: Callable[[...], Any] | None = None, name: str | None = None, description: str | None = None, return_direct: bool = False, fn_schema: Type[BaseModel] | None = None, async_fn: Callable[[...], Awaitable[Any]] | None = None, tool_metadata: ToolMetadata | None = None, tool_type: ToolType = ToolType.QUERY) VectaraTool [source]
- class vectara_agentic.tools.VectaraToolFactory(vectara_customer_id: str = '', vectara_corpus_id: str = '', vectara_api_key: str = '')[source]
Bases:
object
A factory class for creating Vectara RAG tools.
- create_rag_tool(tool_name: str, tool_description: str, tool_args_schema: type[BaseModel], tool_args_type: Dict[str, str] = {}, vectara_summarizer: str = 'vectara-summary-ext-24-05-sml', summary_num_results: int = 5, summary_response_lang: str = 'eng', n_sentences_before: int = 2, n_sentences_after: int = 2, lambda_val: float = 0.005, reranker: str = 'mmr', rerank_k: int = 50, mmr_diversity_bias: float = 0.2, udf_expression: str = None, rerank_chain: List[Dict] = None, include_citations: bool = True, fcs_threshold: float = 0.0, verbose: bool = False) VectaraTool [source]
Creates a RAG (Retrieve and Generate) tool.
- Parameters:
tool_name (str) – The name of the tool.
tool_description (str) – The description of the tool.
tool_args_schema (BaseModel) – The schema for the tool arguments.
tool_args_type (Dict[str, str], optional) – The type of each argument (doc or part).
vectara_summarizer (str, optional) – The Vectara summarizer to use.
summary_num_results (int, optional) – The number of summary results.
summary_response_lang (str, optional) – The response language for the summary.
n_sentences_before (int, optional) – Number of sentences before the summary.
n_sentences_after (int, optional) – Number of sentences after the summary.
lambda_val (float, optional) – Lambda value for the Vectara query.
reranker (str, optional) – The reranker mode.
rerank_k (int, optional) – Number of top-k documents for reranking.
mmr_diversity_bias (float, optional) – MMR diversity bias.
udf_expression (str, optional) – the user defined expression for reranking results.
rerank_chain (List[Dict], optional) – A list of rerankers to be applied sequentially. Each dictionary should specify the “type” of reranker (mmr, slingshot, udf) and any other parameters (e.g. “limit” or “cutoff” for any type, “diversity_bias” for mmr, and “user_function” for udf). If using slingshot/multilingual_reranker_v1, it must be first in the list.
include_citations (bool, optional) – Whether to include citations in the response. If True, uses markdown vectara citations that requires the Vectara scale plan.
fcs_threshold (float, optional) – a threshold for factual consistency. If set above 0, the tool notifies the calling agent that it “cannot respond” if FCS is too low.
verbose (bool, optional) – Whether to print verbose output.
- Returns:
A VectaraTool object.
- Return type:
vectara_agentic.tools_catalog module
This module contains the tools catalog for the Vectara Agentic.
- vectara_agentic.tools_catalog.critique_text(text: str = FieldInfo(annotation=NoneType, required=True, description='the original text.'), role: str = FieldInfo(annotation=NoneType, required=False, default=None, description='the role of the person providing critique.'), point_of_view: str = FieldInfo(annotation=NoneType, required=False, default=None, description='the point of view with which to provide critique.')) str [source]
This is a helper tool. Critique the text from the specified point of view.
- Parameters:
text (str) – The original text.
role (str) – The role of the person providing critique.
point_of_view (str) – The point of view with which to provide critique.
- Returns:
The critique of the text.
- Return type:
str
- vectara_agentic.tools_catalog.get_bad_topics() List[str] [source]
Get the list of topics to avoid in the response.
- vectara_agentic.tools_catalog.rephrase_text(text: str = FieldInfo(annotation=NoneType, required=True, description='the original text.'), instructions: str = FieldInfo(annotation=NoneType, required=True, description='the specific instructions for how to rephrase the text.')) str [source]
This is a helper tool. Use this tool to rephrase the text according to the provided instructions. For example, instructions could be “as a 5 year old would say it.”
- Parameters:
text (str) – The original text.
instructions (str) – The specific instructions for how to rephrase the text.
- Returns:
The rephrased text.
- Return type:
str
- vectara_agentic.tools_catalog.summarize_text(text: str = FieldInfo(annotation=NoneType, required=True, description='the original text.'), expertise: str = FieldInfo(annotation=NoneType, required=True, description='the expertise to apply to the summarization.')) str [source]
This is a helper tool. Use this tool to summarize text using a given expertise with no more than summary_max_length characters.
- Parameters:
text (str) – The original text.
expertise (str) – The expertise to apply to the summarization.
- Returns:
The summarized text.
- Return type:
str
vectara_agentic.agent_endpoint module
This module contains functions to start the agent behind an API endpoint.
- class vectara_agentic.agent_endpoint.ChatRequest(*, message: str)[source]
Bases:
BaseModel
A request model for the chat endpoint.
- message: str
- model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_fields: ClassVar[Dict[str, FieldInfo]] = {'message': FieldInfo(annotation=str, required=True)}
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.
This replaces Model.__fields__ from Pydantic V1.
vectara_agentic.types module
This module contains the types used in the Vectara Agentic.
- class vectara_agentic.types.AgentStatusType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]
Bases:
Enum
Enumeration for different types of agent statuses.
- AGENT_STEP = 'agent_step'
- AGENT_UPDATE = 'agent_update'
- TOOL_CALL = 'tool_call'
- TOOL_OUTPUT = 'tool_output'
- class vectara_agentic.types.AgentType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]
Bases:
Enum
Enumeration for different types of agents.
- LATS = 'LATS'
- LLMCOMPILER = 'LLMCOMPILER'
- OPENAI = 'OPENAI'
- REACT = 'REACT'
- class vectara_agentic.types.LLMRole(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]
Bases:
Enum
Enumeration for different types of LLM roles.
- MAIN: str = 'MAIN'
- TOOL: str = 'TOOL'
- class vectara_agentic.types.ModelProvider(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]
Bases:
Enum
Enumeration for different types of model providers.
- ANTHROPIC = 'ANTHROPIC'
- COHERE = 'COHERE'
- FIREWORKS = 'FIREWORKS'
- GEMINI = 'GEMINI'
- GROQ = 'GROQ'
- OPENAI = 'OPENAI'
- TOGETHER = 'TOGETHER'