"""
This module contains the Agent class for handling different types of agents and their interactions.
"""
from typing import List, Callable, Optional, Dict, Any
import os
from datetime import date
import time
import json
import logging
import traceback
import dill
from dotenv import load_dotenv
from retrying import retry
from pydantic import Field, create_model
from llama_index.core.tools import FunctionTool
from llama_index.core.agent import ReActAgent
from llama_index.core.agent.react.formatter import ReActChatFormatter
from llama_index.agent.llm_compiler import LLMCompilerAgentWorker
from llama_index.agent.lats import LATSAgentWorker
from llama_index.core.callbacks import CallbackManager, TokenCountingHandler
from llama_index.core.callbacks.base_handler import BaseCallbackHandler
from llama_index.agent.openai import OpenAIAgent
from llama_index.core.memory import ChatMemoryBuffer
from .types import AgentType, AgentStatusType, LLMRole, ToolType
from .utils import get_llm, get_tokenizer_for_model
from ._prompts import REACT_PROMPT_TEMPLATE, GENERAL_PROMPT_TEMPLATE, GENERAL_INSTRUCTIONS
from ._callback import AgentCallbackHandler
from ._observability import setup_observer, eval_fcs
from .tools import VectaraToolFactory, VectaraTool
from .agent_config import AgentConfig
logger = logging.getLogger("opentelemetry.exporter.otlp.proto.http.trace_exporter")
logger.setLevel(logging.CRITICAL)
load_dotenv(override=True)
def _get_prompt(prompt_template: str, topic: str, custom_instructions: str):
"""
Generate a prompt by replacing placeholders with topic and date.
Args:
prompt_template (str): The template for the prompt.
topic (str): The topic to be included in the prompt.
custom_instructions(str): The custom instructions to be included in the prompt.
Returns:
str: The formatted prompt.
"""
return (
prompt_template.replace("{chat_topic}", topic)
.replace("{today}", date.today().strftime("%A, %B %d, %Y"))
.replace("{custom_instructions}", custom_instructions)
)
def _get_llm_compiler_prompt(prompt: str, topic: str, custom_instructions: str) -> str:
"""
Add custom instructions to the prompt.
Args:
prompt (str): The prompt to which custom instructions should be added.
Returns:
str: The prompt with custom instructions added.
"""
prompt += "\nAdditional Instructions:\n"
prompt += f"You have experise in {topic}.\n"
prompt += GENERAL_INSTRUCTIONS
prompt += custom_instructions
prompt += f"Today is {date.today().strftime('%A, %B %d, %Y')}"
return prompt
def _retry_if_exception(exception):
# Define the condition to retry on certain exceptions
return isinstance(exception, (TimeoutError))
[docs]
class Agent:
"""
Agent class for handling different types of agents and their interactions.
"""
def __init__(
self,
tools: list[FunctionTool],
topic: str = "general",
custom_instructions: str = "",
verbose: bool = True,
update_func: Optional[Callable[[AgentStatusType, str], None]] = None,
agent_progress_callback: Optional[Callable[[AgentStatusType, str], None]] = None,
agent_config: Optional[AgentConfig] = None,
) -> None:
"""
Initialize the agent with the specified type, tools, topic, and system message.
Args:
tools (list[FunctionTool]): A list of tools to be used by the agent.
topic (str, optional): The topic for the agent. Defaults to 'general'.
custom_instructions (str, optional): Custom instructions for the agent. Defaults to ''.
verbose (bool, optional): Whether the agent should print its steps. Defaults to True.
agent_progress_callback (Callable): A callback function the code calls on any agent updates.
update_func (Callable): old name for agent_progress_callback. Will be deprecated in future.
agent_config (AgentConfig, optional): The configuration of the agent.
Defaults to AgentConfig(), which reads from environment variables.
"""
self.agent_config = agent_config or AgentConfig()
self.agent_type = self.agent_config.agent_type
self.tools = tools
self.llm = get_llm(LLMRole.MAIN, config=self.agent_config)
self._custom_instructions = custom_instructions
self._topic = topic
self.agent_progress_callback = agent_progress_callback if agent_progress_callback else update_func
main_tok = get_tokenizer_for_model(role=LLMRole.MAIN)
self.main_token_counter = TokenCountingHandler(tokenizer=main_tok) if main_tok else None
tool_tok = get_tokenizer_for_model(role=LLMRole.TOOL)
self.tool_token_counter = TokenCountingHandler(tokenizer=tool_tok) if tool_tok else None
callbacks: list[BaseCallbackHandler] = [AgentCallbackHandler(self.agent_progress_callback)]
if self.main_token_counter:
callbacks.append(self.main_token_counter)
if self.tool_token_counter:
callbacks.append(self.tool_token_counter)
callback_manager = CallbackManager(callbacks) # type: ignore
self.llm.callback_manager = callback_manager
self.verbose = verbose
self.memory = ChatMemoryBuffer.from_defaults(token_limit=128000)
if self.agent_type == AgentType.REACT:
prompt = _get_prompt(REACT_PROMPT_TEMPLATE, topic, custom_instructions)
self.agent = ReActAgent.from_tools(
tools=tools,
llm=self.llm,
memory=self.memory,
verbose=verbose,
react_chat_formatter=ReActChatFormatter(system_header=prompt),
max_iterations=30,
callable_manager=callback_manager,
)
elif self.agent_type == AgentType.OPENAI:
prompt = _get_prompt(GENERAL_PROMPT_TEMPLATE, topic, custom_instructions)
self.agent = OpenAIAgent.from_tools(
tools=tools,
llm=self.llm,
memory=self.memory,
verbose=verbose,
callable_manager=callback_manager,
max_function_calls=20,
system_prompt=prompt,
)
elif self.agent_type == AgentType.LLMCOMPILER:
self.agent = LLMCompilerAgentWorker.from_tools(
tools=tools,
llm=self.llm,
verbose=verbose,
callable_manager=callback_manager,
).as_agent()
self.agent.agent_worker.system_prompt = _get_prompt(
_get_llm_compiler_prompt(self.agent.agent_worker.system_prompt, topic, custom_instructions),
topic, custom_instructions
)
self.agent.agent_worker.system_prompt_replan = _get_prompt(
_get_llm_compiler_prompt(self.agent.agent_worker.system_prompt_replan, topic, custom_instructions),
topic, custom_instructions
)
elif self.agent_type == AgentType.LATS:
agent_worker = LATSAgentWorker.from_tools(
tools=tools,
llm=self.llm,
num_expansions=3,
max_rollouts=-1,
verbose=verbose,
callable_manager=callback_manager,
)
prompt = _get_prompt(REACT_PROMPT_TEMPLATE, topic, custom_instructions)
agent_worker.chat_formatter = ReActChatFormatter(system_header=prompt)
self.agent = agent_worker.as_agent()
else:
raise ValueError(f"Unknown agent type: {self.agent_type}")
try:
self.observability_enabled = setup_observer(self.agent_config)
except Exception as e:
print(f"Failed to set up observer ({e}), ignoring")
self.observability_enabled = False
[docs]
def clear_memory(self) -> None:
"""
Clear the agent's memory.
"""
self.agent.memory.reset()
def __eq__(self, other):
"""
Compare two Agent instances for equality.
"""
if not isinstance(other, Agent):
print(f"Comparison failed: other is not an instance of Agent. (self: {type(self)}, other: {type(other)})")
return False
# Compare agent_type
if self.agent_type != other.agent_type:
print(
f"Comparison failed: agent_type differs. (self.agent_type: {self.agent_type}, "
f"other.agent_type: {other.agent_type})"
)
return False
# Compare tools
if self.tools != other.tools:
print(f"Comparison failed: tools differ. (self.tools: {self.tools}, other.tools: {other.tools})")
return False
# Compare topic
if self._topic != other._topic:
print(f"Comparison failed: topic differs. (self.topic: {self._topic}, other.topic: {other._topic})")
return False
# Compare custom_instructions
if self._custom_instructions != other._custom_instructions:
print(
"Comparison failed: custom_instructions differ. (self.custom_instructions: "
f"{self._custom_instructions}, other.custom_instructions: {other._custom_instructions})"
)
return False
# Compare verbose
if self.verbose != other.verbose:
print(f"Comparison failed: verbose differs. (self.verbose: {self.verbose}, other.verbose: {other.verbose})")
return False
# Compare agent
if self.agent.memory.chat_store != other.agent.memory.chat_store:
print(
f"Comparison failed: agent memory differs. (self.agent: {repr(self.agent.memory.chat_store)}, "
f"other.agent: {repr(other.agent.memory.chat_store)})"
)
return False
# If all comparisons pass
print("All comparisons passed. Objects are equal.")
return True
[docs]
@classmethod
def from_corpus(
cls,
tool_name: str,
data_description: str,
assistant_specialty: str,
vectara_customer_id: str = str(os.environ.get("VECTARA_CUSTOMER_ID", "")),
vectara_corpus_id: str = str(os.environ.get("VECTARA_CORPUS_ID", "")),
vectara_api_key: str = str(os.environ.get("VECTARA_API_KEY", "")),
agent_progress_callback: Optional[Callable[[AgentStatusType, str], None]] = None,
verbose: bool = False,
vectara_filter_fields: list[dict] = [],
vectara_lambda_val: float = 0.005,
vectara_reranker: str = "mmr",
vectara_rerank_k: int = 50,
vectara_n_sentences_before: int = 2,
vectara_n_sentences_after: int = 2,
vectara_summary_num_results: int = 10,
vectara_summarizer: str = "vectara-summary-ext-24-05-sml",
) -> "Agent":
"""
Create an agent from a single Vectara corpus
Args:
tool_name (str): The name of Vectara tool used by the agent
vectara_customer_id (str): The Vectara customer ID.
vectara_corpus_id (str): The Vectara corpus ID (or comma separated list of IDs).
vectara_api_key (str): The Vectara API key.
agent_progress_callback (Callable): A callback function the code calls on any agent updates.
data_description (str): The description of the data.
assistant_specialty (str): The specialty of the assistant.
verbose (bool, optional): Whether to print verbose output.
vectara_filter_fields (List[dict], optional): The filterable attributes
(each dict maps field name to Tuple[type, description]).
vectara_lambda_val (float, optional): The lambda value for Vectara hybrid search.
vectara_reranker (str, optional): The Vectara reranker name (default "mmr")
vectara_rerank_k (int, optional): The number of results to use with reranking.
vectara_n_sentences_before (int, optional): The number of sentences before the matching text
vectara_n_sentences_after (int, optional): The number of sentences after the matching text.
vectara_summary_num_results (int, optional): The number of results to use in summarization.
vectara_summarizer (str, optional): The Vectara summarizer name.
Returns:
Agent: An instance of the Agent class.
"""
vec_factory = VectaraToolFactory(
vectara_api_key=vectara_api_key,
vectara_customer_id=vectara_customer_id,
vectara_corpus_id=vectara_corpus_id,
)
field_definitions = {}
field_definitions["query"] = (str, Field(description="The user query")) # type: ignore
for field in vectara_filter_fields:
field_definitions[field["name"]] = (
eval(field["type"]),
Field(description=field["description"]),
) # type: ignore
query_args = create_model("QueryArgs", **field_definitions) # type: ignore
vectara_tool = vec_factory.create_rag_tool(
tool_name=tool_name or f"vectara_{vectara_corpus_id}",
tool_description=f"""
Given a user query,
returns a response (str) to a user question about {data_description}.
""",
tool_args_schema=query_args,
reranker=vectara_reranker,
rerank_k=vectara_rerank_k,
n_sentences_before=vectara_n_sentences_before,
n_sentences_after=vectara_n_sentences_after,
lambda_val=vectara_lambda_val,
summary_num_results=vectara_summary_num_results,
vectara_summarizer=vectara_summarizer,
include_citations=False,
)
assistant_instructions = f"""
- You are a helpful {assistant_specialty} assistant.
- You can answer questions about {data_description}.
- Never discuss politics, and always respond politely.
"""
return cls(
tools=[vectara_tool],
topic=assistant_specialty,
custom_instructions=assistant_instructions,
verbose=verbose,
agent_progress_callback=agent_progress_callback,
)
[docs]
def report(self) -> None:
"""
Get a report from the agent.
Returns:
str: The report from the agent.
"""
print("Vectara agentic Report:")
print(f"Agent Type = {self.agent_type}")
print(f"Topic = {self._topic}")
print("Tools:")
for tool in self.tools:
if hasattr(tool, 'metadata'):
print(f"- {tool.metadata.name}")
else:
print("- tool without metadata")
print(f"Agent LLM = {get_llm(LLMRole.MAIN).metadata.model_name}")
print(f"Tool LLM = {get_llm(LLMRole.TOOL).metadata.model_name}")
[docs]
def token_counts(self) -> dict:
"""
Get the token counts for the agent and tools.
Returns:
dict: The token counts for the agent and tools.
"""
return {
"main token count": self.main_token_counter.total_llm_token_count if self.main_token_counter else -1,
"tool token count": self.tool_token_counter.total_llm_token_count if self.tool_token_counter else -1,
}
[docs]
@retry(
retry_on_exception=_retry_if_exception,
stop_max_attempt_number=3,
wait_fixed=2000,
)
def chat(self, prompt: str) -> str:
"""
Interact with the agent using a chat prompt.
Args:
prompt (str): The chat prompt.
Returns:
str: The response from the agent.
"""
try:
st = time.time()
agent_response = self.agent.chat(prompt)
if self.agent_type == AgentType.LATS:
prompt = f"""
Given the question '{prompt}', and agent response '{agent_response.response}',
Please provide a well formatted final response to the query.
final response:
"""
final_response = str(self.llm.complete(prompt))
else:
final_response = agent_response.response
if self.verbose:
print(f"Time taken: {time.time() - st}")
if self.observability_enabled:
eval_fcs()
return final_response
except Exception as e:
return f"Vectara Agentic: encountered an exception ({e}) at ({traceback.format_exc()}), and can't respond."
# Serialization methods
[docs]
def dumps(self) -> str:
"""Serialize the Agent instance to a JSON string."""
return json.dumps(self.to_dict())
[docs]
@classmethod
def loads(cls, data: str) -> "Agent":
"""Create an Agent instance from a JSON string."""
return cls.from_dict(json.loads(data))
[docs]
def to_dict(self) -> Dict[str, Any]:
"""Serialize the Agent instance to a dictionary."""
tool_info = []
for tool in self.tools:
# Serialize each tool's metadata, function, and dynamic model schema (QueryArgs)
tool_dict = {
"tool_type": tool.metadata.tool_type.value,
"name": tool.metadata.name,
"description": tool.metadata.description,
"fn": dill.dumps(tool.fn).decode("latin-1") if tool.fn else None, # Serialize fn
"async_fn": dill.dumps(tool.async_fn).decode("latin-1")
if tool.async_fn
else None, # Serialize async_fn
"fn_schema": tool.metadata.fn_schema.model_json_schema()
if hasattr(tool.metadata, "fn_schema")
else None, # Serialize schema if available
}
tool_info.append(tool_dict)
return {
"agent_type": self.agent_type.value,
"memory": dill.dumps(self.agent.memory).decode("latin-1"),
"tools": tool_info,
"topic": self._topic,
"custom_instructions": self._custom_instructions,
"verbose": self.verbose,
"agent_config": self.agent_config.to_dict(),
}
[docs]
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "Agent":
"""Create an Agent instance from a dictionary."""
agent_config = AgentConfig.from_dict(data["agent_config"])
tools = []
json_type_to_python = {
"string": str,
"integer": int,
"boolean": bool,
"array": list,
"object": dict,
"number": float,
}
for tool_data in data["tools"]:
# Recreate the dynamic model using the schema info
if tool_data.get("fn_schema"):
field_definitions = {}
for field, values in tool_data["fn_schema"]["properties"].items():
if "default" in values:
field_definitions[field] = (
json_type_to_python.get(values["type"], values["type"]),
Field(
description=values["description"],
default=values["default"],
),
) # type: ignore
else:
field_definitions[field] = (
json_type_to_python.get(values["type"], values["type"]),
Field(description=values["description"]),
) # type: ignore
query_args_model = create_model("QueryArgs", **field_definitions) # type: ignore
else:
query_args_model = create_model("QueryArgs")
fn = dill.loads(tool_data["fn"].encode("latin-1")) if tool_data["fn"] else None
async_fn = dill.loads(tool_data["async_fn"].encode("latin-1")) if tool_data["async_fn"] else None
tool = VectaraTool.from_defaults(
name=tool_data["name"],
description=tool_data["description"],
fn=fn,
async_fn=async_fn,
fn_schema=query_args_model, # Re-assign the recreated dynamic model
tool_type=ToolType(tool_data["tool_type"]),
)
tools.append(tool)
agent = cls(
tools=tools,
agent_config=agent_config,
topic=data["topic"],
custom_instructions=data["custom_instructions"],
verbose=data["verbose"],
)
memory = dill.loads(data["memory"].encode("latin-1")) if data.get("memory") else None
if memory:
agent.agent.memory = memory
return agent